Graphene plasmonics for terahertz to mid-infrared applications.

نویسندگان

  • Tony Low
  • Phaedon Avouris
چکیده

In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping pathways. The application space of graphene plasmonics lies in the technologically significant, but relatively unexploited terahertz to mid-infrared regime. We discuss emerging and potential applications, such as modulators, notch filters, polarizers, mid-infrared photodetectors, and mid-infrared vibrational spectroscopy, among many others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-biased reconfigurable graphene stacks for terahertz plasmonics.

The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single 'control knob' that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed ...

متن کامل

Terahertz and mid-infrared reflectance of epitaxial graphene

Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR...

متن کامل

Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene

Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this mat...

متن کامل

Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.

Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical dopin...

متن کامل

Plasmonics with two-dimensional conductors.

A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2014